Attachment of Chelating Capacity to [60]Fullerene via Short Rigid Rods

Ronald N. Warrener,* Gordon M. Elsey and Mark A. Houghton
Centre for Molecular Architecture, Central Queensland University, Rockhampton, Queensland, 4702, Australia

The cycloaddition properties of [60]fullerene containing attached olefinic centres is investigated and exploited to prepare new chelating agents attached to [60]fullerene.

Buckminsterfullerene [60]fullerene is especially reactive in cycloaddition reactions and has been shown to participate as a 2π component in $[2+1],[2+2],[4+2]$ and higher order cycloadditions, under thermal, ${ }^{1}$ photochemical ${ }^{2}$ or high-pressure conditions ${ }^{3}$ so that a wide variety of [60]fullerene adducts is now available. As there are six equivalent π centres in [60]fullerene, addition often occurs at more than one centre and polyadducts have been observed in some cases. ${ }^{4}$

In the development of functionalised [60]fullerene derivatives, single cycloaddition reactions have been utilised to attach prefunctionalised dienes to [60]fullerene; the 'ball and chain' adduct 1 reported by Khan et al. ${ }^{5}$ typifies the type of complex product available by this approach.

Our own interest in cycloaddition reactions, however, took us down a track which has been little explored to date in [60]fullerene chemistry. This involves the cycloaddition chemistry onto π centres already attached by σ bonds to the [60]fullerene. Thus we were interested in the cycloaddition properties of the known, norbornene-containing adducts 2^{6} and 5.7

The reverse electron-demand diene 3,6-di(2-pyridyl)-s- tetrazine 8 reacted site-specifically at the external site with 2 and 5 to produce cycloadducts, e.g. 6, which were readily oxidised to $3,6-\mathrm{di}\left(2^{\prime}\right.$-pyridyl)pyridazine adducts 4 and 7 , respectively (Scheme 1). These compounds represent the first example of a new class of polydentate nitrogen ligands \dagger incorporating an attached [60]fullerene moiety. Spectral data and mass spectrometry supported the assigned structures. In particular, the downfield shift of the aliphatic proton resonances in 4 and 7 are typical of [60]fullerene adducts, while electrospray mass
spectrometry confirmed their $1: 1$ nature. The ${ }^{13} \mathrm{C}$ NMR spectrum supported the C_{s} symmetry demanded by these adducts, and the sharpness of the resonances attested to the rigid nature of the carbon scaffolding linking the ligand to the [60]fullerene.

Reaction of norbornene 2 with DMAD was only productive in the presence of $\left[\mathrm{RuH}_{2}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}\right]$ as catalyst ${ }^{11}$ and formed cyclobutene 3 which demonstrates further the ability of 2 to react specifically at the norbornene π centre. Spectral data \ddagger are consistent with the expected exo-specific addition occurring at the norbornenyl π centre to form cyclobutene 3. In simple alicyclic systems, this type of activated cyclobutene undergoes Diels-Alder cycloaddition with a range of regular electrondemand dienes: ${ }^{12}$ in contrast, efforts to conduct cycloaddition with 3 and cyclopentadiene, 3,4-dimethoxyfuran ${ }^{13}$ and hemicyclone gave spectral evidence for the formation of polysubstitution products rather than site-selective monoadducts.§

We have conducted preliminary examination of the FMO orbitals of the [60]fullerene olefins 2,3 and 5 . In each case semi-empirical data \mathbb{T} indicates that the electron density resides on the [60]fullerene in both the HOMO and LUMO and while this is in keeping with the lack of specificity observed in the reaction of regular dienes with these [60]fullerene derivatives it is not helpful in accounting for the external site selectivity observed in the reverse-electron demand reaction. Recourse to sub- and super-adjacent orbital contribution does not clarify these results and more extensive calculation may be required to shed light on these cycloadditions.

In conclusion, we have found a simple entry to [60]fullerene derivatives containing polydentate ligands which can be

1

Scheme 1 i, DMAD $\left[\mathrm{RuH}_{2}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}\right]$, toluene, reflux; ii, 3,6-di(2-pyridyl)-s-tetrazine, CHCl_{3}, reflux; iii, DDQ
achieved in a two-step procedure from readily available starting materials. Metal complexation on these and other [60]fullerene ligands will be reported in due course.

We thank Dr. A. Jones, Centre for Drug Design, University of Queensland for providing the electrospray mass spectrometry results on 4 and 7. R. N. W. acknowledges the award of a Senior Research Fellowship (1992-1996) funded by the Australian Research Council.

Received, 19th December 1994; Com. 4/07714H

Footnotes

$\dagger 3,6-\mathrm{Di}(2-$ pyridyl)pyridazine is a recognised ligand and forms complexes with a variety of metals, ${ }^{9}$ and has recently been attached to rigid spacer molecules. ${ }^{10}$
\ddagger Selected spectroscopic data: 3; $\mathrm{mp}>300^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.06(\mathrm{~d}$, $J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 6 \mathrm{H}), 3.23,(\mathrm{~s}, 2 \mathrm{H}), 3.08(\mathrm{~s}, 2 \mathrm{H}), 2.02$ $(\mathrm{d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta 161.31,155.73,150.49,147.45$, $146.95,146.09,146.06,146.03,145.97,145.53,145.48,145.45,145.40$, $145.32,145.17,144.66,144.52,143.11,143.05,142.87,142.81,142.67$, $142.60,142.16,142.13,142.11,142.01,141.16,140.70,140.50,140.43$, 77.22, 69.83, 52.69, 52.13, 46.81, 37.94.

4; mp $>300^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.88(\mathrm{~m}, 2 \mathrm{H}), 8.75(\mathrm{~m}, 2 \mathrm{H}), 7.98$ $(\mathrm{m}, 2 \mathrm{H}), 7.44(\mathrm{~m}, 2 \mathrm{H}), 5.48(\mathrm{~s}, 2 \mathrm{H}), 4.54,(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~s}, 2 \mathrm{H})$, $2.37(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta 155.58,152.50,150.11$, $149.60,147.99,146.91,146.07,146.02,146.00,145.70,145.49,145.28$, $145.14,144.63,144.50,143.09,142.91,142.84,142.69,142.61,142.20$, $142.16,142.08,141.18,140.74,140.51,140.32,136.97,135.72,124.07$, 123.13, 67.62, 48.52, 46.35, 41.94; MS: m/z $1019.5\left(\mathrm{M}^{+}\right)$.
$7 \mathrm{mp}>300^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.75(\mathrm{~m}, 2 \mathrm{H}), 8.65(\mathrm{~m}, 2 \mathrm{H}), 7.85(\mathrm{~m}$, $2 \mathrm{H}), 7.25(\mathrm{~m}, 2 \mathrm{H}), 6.28(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.85(\mathrm{~d}, J=11.4$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta 155.97,154.88,149.10,147.25,146.75$, $146.36,146.14,146.11,146.02,145.88,145.49,145.45,145.36,145.02$, $144.52,144.30,142.96,142.78,142.63,142.60,142.32,142.08,141.97$,
$141.96,141.91,140.22,139.46,137.47,136.90,136.02,124.23,122.81$, $74.33,56.36,45.01$; MS: $m / z 993.3$ (M^{+}).
§Similar cycloadditions on to 2 and $\mathbf{3}$ also gave only polysubstituted products.
IThe three semi-empirical techniques AM1, MNDO, PM3 gave essentially identical results. Calculations were performed using the SPARTAN V3.1 package.

References

1 inter alia A. Hirsch, Angew. Chem., Int. Ed. Engl., 1993, 32, 1138 and references cited therein.
2 S. R. Wilson, N. Kaprinidis, Y. Wu and D. I. Schuster, J. Am. Chem. Soc., 1993, 115, 8495.
3 H. Takeshita, J-F. Liu, N. Kato and A. Mori, J. Chem. Soc., Perkin Trans. 1, 1994, 1433.
4 P. Belik, A. Gügel, J. Spickermann and K. Müllen, Angew. Chem., Int. Ed. Engl., 1993, 32, 78; S. H. Hoke, J. Molstad, D. Dilettato, M. J. Jay, D. Carlson, B. Kahr and R.G. Cooks, J. Org. Chem., 1992, 57, 5069.

5 S. I. Khan, A. M. Oliver, M. N. Paddon-Row and Y. Rubin, J. Am. Chem. Soc., 1993, 115, 4919.
6 M. Prato, M. Maggini, G. Scorrano and V. Lucchini, J. Org. Chem., 1993, 58, 3613.
7 V. M. Rotello, J. B. Howard, T. Yadav, M. M. Conn, E. Viani, L. M. Giovane and A. L. Lafleur, Tetrahedron Lett., 1993, 34, 1561.
8 H. A. Goodwin and F. Lions, J. Am. Chem. Soc., 1959, 81, 6415.
9 M. T. Youinou, N. Rahmouni, J. Fischer and J. A. Osborn, Angew. Chem., Int. Ed. Engl., 1992, 31, 733; A. Golka, P. J. Keyte and M. N. Paddon-Row, Tetrahedron, 1992, 48, 7663.
10 R. N. Warrener, G. M. Elsey, I. V. Sankar, D. N. Butler, P. Pekos and C. H. L. Kennard, Tetrahedron Lett., 1994, 35, 6745.

11 T. Mitsudo, K. Kokuryo, T. Shinsugi, Y. Nakagawa, Y. Watanabe and Y.Takegami, J. Org. Chem., 1979, 44, 4492.

12 R. N. Warrener, L. Maksimovic and D. N. Butler, J. Chem. Soc., Chem. Commun., 1994, 1831.
13 E. McDonald, A. Suksamrarn and R. D. Wylie, J. Chem. Soc., Perkin Trans. l, 1979, 1893.

